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Abstract: The induction motor behavior is represented by a fifth order differential equation model. Addition of a 
torque correction factor to this model accurately reproduces the transient torques and instantaneous real and reactive 
power flows of the full seventh order differential equation model. The aim of this study is to solve the seventh order 
boundary value problems and the variation of parameters method is used for this purpose. The approximate solutions 
of the problems are obtained in terms of rapidly convergent series. Two numerical examples have been given to 
illustrate the efficiency and implementation of the method. 
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INTRODUCTION 
 

The theory of seventh order boundary value 
problems is not much available in the numerical 
analysis literature. The seventh order boundary 
value problems generally arise in modelling 
induction motors with two rotor circuits. The 
behavior of induction motor is represented by a 
fifth order differential equation model. This 
model contains two stator state variables, two 
rotor state variables and one shaft speed. 
Normally, two more variables must be added to 
account for the effects of a second rotor circuit 
representing deep bars, a starting cage or rotor 
distributed parameters. To avoid the computational 
burden of additional state variables when 
additional rotor circuits are required, model is 
often limited to the fifth order and rotor 
impedance is algebraically altered as function of 
rotor speed. This is done under the assumption that 
the frequency of rotor currents depends on rotor 
speed. This approach is efficient for the steady 
state response with sinusoidal voltage, but i t  does 
not hold up during the transient conditions, when 
rotor frequency is not a single value. So, the 
behaviors of such models show up in the seventh 
order differential equation model (Richards and Sarma, 
1994). 

Siddiqi and Akram (2006a, b) presented the 
solutions of fifth and sixth order boundary value 
problems using non-polynomial spline. Noor et al. 
(2008) used the variation of parameters method for 
solving the fifth order boundary value problems. In 

Akram and Rehman (2011), solved the fifth order 
boundary value problems using the Reproducing Kernel 
space method. Akram and Siddiqi (2012) presented the 
solution of seventh order boundary value problem using 
octic spline. 

In this study, the solution of seventh order 
boundary value problem is presented using variation of 
parameters method, following variation of parameters 
method in Mohyud-Din et al. (2009) for the solution of 
sixth order boundary value problems. This method does 
not require the identification of Lagrange multipliers 
and applied in a direct way.  
 

VARIATION OF PARAMETERS M E T H O D  
 

Consider the seventh order boundary value 
problem of the form: 
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with boundary conditions: 
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The variation of parameters method provides the 

solution of Eq. (1) as: 
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The first term on right hand side of the Eq. (3) is 
said to be the complementary solution of equation Eq. 
(1) and second term is said to be the particular solution. 
In variation of parameters method the constants Ai s are 
replaced by the parameters and using this modified 
expression in Eq. (1) a system of equations is obtained 
after some making some assumptions. The solution of 
this system gives the values of the parameters in terms 
of the integrals and hence the particular solution is 
obtained as in Eq. (3). Consequently, applying the 
boundary conditions (2) on Eq. (3), the following 
reccurence relation is obtained: 
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Using initial approximation as )()(0 xvxu  . 

To implement the method, two numerical examples are 
considered in the following section. 
 

NUMERICAL EXAMPLES 
 
Example 1: Consider the linear seventh order 
boundary value problem: 
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The exact solution of the Example 1 is 

xexxxu )1()(   (Akram and Siddiqi, 2012). 
Using the variation of parameters method (4), the given 
seventh order boundary value problem (5) can be 
written as: 
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Applying the boundary conditions (5), on Eq. (6), 
yields: 
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Finally, the series solution is given as: 
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The comparison of the exact solution with the 
series solution of the Example 1 is given in Table 1. 
Maximum absolute errors for Example 1 are compared  
with the octic spline method (Akram and Siddiqi, 2012) 
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Table 1: Comparison of numerical results for Example 1 

x 
Exact 
solution 

Approximate series 
solution 

Absolute error 
present method 

0.0 0.0000 0.0000 0.0000 
0.1 0.9946 0.9946 8.55607E-13 
0.2 0.1954 0.1954 9.94041E-12 
0.3 0.2835 0.2835 3.52244E-11 
0.4 0.3580 0.3580 7.3224E-10 
0.5 0.4122 0.4122 1.08769E-10 
0.6 0.4373 0.4373 1.29035E-10 
0.7 0.4229 0.4229 1.51466E-10 
0.8 0.3561 0.3561 2.717974E-10 
0.9 0.2214 0.2214 7.48179E-10 
1.0 0.0000 -2.1729E-09 2.1729E-09 

 
Table 2: Comparison of maximum absolute errors for Example 1 

Present method (for u3 ) 
Octic spline method (Akram and 
Siddiqi, 2012) 

2.1729E-09 n = 10,    5.5071E-06 
n = 20,   2.2960E-07 
n = 30,    2.5180E-08 
n = 40,   3.1744E-09 

 
in Table 2, which shows that the present method is 
quite efficient. 
 
Example 2: The following seventh order nonlinear 
boundary value problem is considered: 
  











 

,)1()1()1(
,1)0()0()0()0(

10),()(

)4()2(

)6()4()2(

2)7(

euuu
uuuu

xxuexu x

             (7) 

 

The exact solution of the problem (6) is xexu )( .  

Using the variation of parameters method (4), the given 
seventh order boundary value problem (7) can be 
written as: 
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Applying the boundary conditions (7), on Eq. (8), 
gives: 
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      Finally, the series solution can be written as: 
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  In   Table 3, the exact solution and the series solution 
of the Example 2 are compared, which shows that the 
method is quite accurate. 
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Table 3: Comparison of numerical results for Example 2 

x Exact solution 
Approximate 
series solution 

Absolute error 
present method

0.0 1.0000 1.0000 0.0000
0.1 1.1051 1.1051 2.26257E-07

0.2 1.2214 1.2214 4.38942E-07
0.3 1.3498 1.3498 6.1274E-07
0.4 1.4918 1.4918 7.71759E-07
0.5 1.6487 1.6487 7.71759E-07
0.6 1.8221 1.8221 7.37682E-07
0.7 2.0137 2.0137 6.25932E-07
0.8 2.2255 2.2255 4.68244E-07
0.9 2.4596 2.4596 2.95852E-07

  1.0 2.7182 2.7182 1.25922E-07

 
CONCLUSION 

 
In this study, the variation of parameters method 

has been applied to obtain the numerical solutions of 
linear and nonlinear seventh order boundary value 
problems. The method applied directly without using 
any linearization, discretization or perturbation 
assumptions. This method gives rapidly converging 
series solutions in both linear and nonlinear cases. The 
numerical results show that the present method is more 
accurate. 
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